Impossible Boomerang Attack for Block Cipher Structures
نویسندگان
چکیده
Impossible boomerang attack [5] (IBA) is a new variant of differential cryptanalysis against block ciphers. Evident from its name, it combines the ideas of both impossible differential cryptanalysis and boomerang attack. Though such an attack might not be the best attack available, its complexity is still less than that of the exhaustive search. In impossible boomerang attack, impossible boomerang distinguishers are used to retrieve some of the subkeys. Thus the security of a block cipher against IBA can be evaluated by impossible boomerang distinguishers. In this paper, we study the impossible boomerang distinguishers for block cipher structures whose round functions are bijective. Inspired by the U-method in [3], we provide an algorithm to compute the maximum length of impossible boomerang distinguishers for general block cipher structures, and apply the algorithm to known block cipher structures such as Nyberg’s generalized Feistel network, a generalized CAST256-like structure, a generalized MARS-like structure, a generalized RC6-like structure, etc.
منابع مشابه
The (related-key) impossible boomerang attack and its application to the AES block cipher
The Advanced Encryption Standard (AES) is a 128-bit block cipher with a user key of 128, 192 or 256 bits, released by NIST in 2001 as the next-generation data encryption standard for use in the USA. It was adopted as an ISO international standard in 2005. Impossible differential cryptanalysis and the boomerang attack are powerful variants of differential cryptanalysis for analysing the security...
متن کاملImpossible Differential Cryptanalysis of Reduced-Round Midori64 Block Cipher (Extended Version)
Impossible differential attack is a well-known mean to examine robustness of block ciphers. Using impossible differ- ential cryptanalysis, we analyze security of a family of lightweight block ciphers, named Midori, that are designed considering low energy consumption. Midori state size can be either 64 bits for Midori64 or 128 bits for Midori128; however, both vers...
متن کاملCryptanalysis of Reduced Versions of the HIGHT Block Cipher from CHES 2006
HIGHT is a 32-round block cipher with a 64-bit block size and a 128-bit user key, which was proposed at CHES ’06 for low-resource applications like RFID. In this paper, we present an impossible differential attack on 25-round HIGHT, a related-key rectangle attack on 26round HIGHT, and finally a related-key impossible differential attack on 28-round HIGHT. Our result suggests that the safety mar...
متن کاملImpossible-Differential and Boomerang Cryptanalysis of Round-Reduced Kiasu-BC
Kiasu-BC is a tweakable block cipher proposed by Jean et al. at ASIACRYPT 2014 alongside their TWEAKEY framework. The cipher is almost identical to the AES-128 except for the tweak, which renders it an attractive primitive for various modes of operation and applications requiring tweakable block ciphers. Therefore, studying how the additional tweak input affects security compared to that of the...
متن کاملAttacking Reduced-Round Versions of the SMS4 Block Cipher in the Chinese WAPI Standard
SMS4 is a 32-round block cipher with a 128-bit block size and a 128-bit user key. It is used in WAPI, the Chinese WLAN national standard. In this paper, we present a rectangle attack on 14-round SMS4, and an impossible differential attack on 16-round SMS4. These are better than any previously known cryptanalytic results on SMS4 in terms of the numbers of attacked rounds.
متن کامل